632 research outputs found

    AC Loss Calculation of REBCO Cables by the Combination of Electric Circuit Model and 2D Finite Element Method

    Get PDF
    AbstractThis study investigates the losses in a two conducting-layer REBCO cable fabricated by researchers at Furukawa Electric Co. Ltd. The losses were calculated using a combination of my electric circuit (EC) model with a two-dimensional finite element method (2D FEM). The helical pitches of the tapes in each layer, P1 and P2, were adjusted to equalize the current in both cable layers, although the loss calculation assumed infinite helical pitches and the same current in each layer at first. The results showed that the losses depended on the relative tape-position angle between the layers (θ/θ’), because the vertical field between adjacent tapes in the same layer varied with θ/θ’. When simulating the real cable, the helical pitches were adjusted and the layer currents were calculated by the EC model. These currents were input to the 2D FEM to compute the losses. The losses changed along the cable length because the difference between P1 and P2 altered the θ/θ’ along this direction. The average angle-dependent and position-dependent losses were equal and closely approximated the measured losses. As an example to reduce the loss in this cable, the angle and the helical pitches were fixed at θ/θ’ = 0.5 and P1 = P2 = 100mm (S-direction). The calculation with these conditions indicated that the loss is about one order of magnitude lower than the measurement

    Study on successive superconducting transitions in Ta2_{2}S2_{2}C from electrical resistivity and nonlinear AC magnetic susceptibility

    Get PDF
    Ta2_{2}S2_{2}C compound undergoes superconducting transitions at Tcl=3.60±0.02T_{cl} = 3.60 \pm 0.02 K and Tcu=9.0±0.2T_{cu} = 9.0 \pm 0.2 K. The nature of successive superconducting transitions has been studied from electrical resistivity, linear and nonlinear AC magnetic susceptibilities. The resistivity ρ\rho at HH = 0 shows a local maximum near TcuT_{cu}, a kink-like behavior around TclT_{cl}, and reduces to zero at below T0T_{0} = 2.1 K. The lnT\ln T dependence of ρ\rho is observed at HH = 50 kOe at low temperatures, which is due to two-dimensional weak-localization effect. Below TcuT_{cu} a two-dimensional superconducting phase occurs in each TaC layer. The linear and nonlinear susceptibilities χ1\chi_{1}^{\prime\prime}, χ3\chi_{3}^{\prime}, χ5\chi_{5}^{\prime}, and χ7\chi_{7}^{\prime} as well as the difference δχ\delta\chi (=χFCχZFC= \chi_{FC} - \chi_{ZFC}) between the FC and ZFC susceptibilities, start to appear below 6.0 K, the onset temperature of irreversibility. A drastic growth of the in-plane superconducting coherence length below 6.0 K gives rise to a three-dimensional superconducting phase below TclT_{cl}, through interplanar Josephson couplings between adjacent TaC layers. The oscillatory behavior of χ3\chi_{3}^{\prime\prime}, χ5\chi_{5}^{\prime\prime}, and χ7\chi_{7}^{\prime\prime} below TclT_{cl} is related to the nonlinear behavior arising from the thermally activated flux flow.Comment: 11 pages, 10 figures, Physical Review B (accepted for publication

    Molecular Chemical Engines: Pseudo-Static Processes and the Mechanism of Energy Transduction

    Full text link
    We propose a simple theoretical model for a molecular chemical engine that catalyzes a chemical reaction and converts the free energy released by the reaction into mechanical work. Binding and unbinding processes of reactant and product molecules to and from the engine are explicitly taken into account. The work delivered by the engine is calculated analytically for infinitely slow (``pseudo-static'') processes, which can be reversible (quasi-static) or irreversible, controlled by an external agent. It is shown that the work larger than the maximum value limited by the second law of thermodynamics can be obtained in a single cycle of operation by chance, although the statistical average of the work never exceeds this limit and the maximum work is delivered if the process is reversible. The mechanism of the energy transductionis also discussed.Comment: 8 pages, 3 figues, submitted to J. Phys. Soc. Jp

    Spectromicroscopy of electronic phase separation in Kx_xFe2y_{2-y}Se2_2 superconductor

    Full text link
    Structural phase separation in Ax_xFe2y_{2-y}Se2_2 system has been studied by different experimental techniques, however, it should be important to know how the electronic uniformity is influenced, on which length scale the electronic phases coexist, and what is their spatial distribution. Here, we have used novel scanning photoelectron microscopy (SPEM) to study the electronic phase separation in Kx_xFe2y_{2-y}Se2_2, providing a direct measurement of the topological spatial distribution of the different electronic phases. The SPEM results reveal a peculiar interconnected conducting filamentary phase that is embedded in the insulating texture. The filamentary structure with a particular topological geometry could be important for the high Tc_c superconductivity in the presence of a phase with a large magnetic moment in Ax_xFe2y_{2-y}Se2_2 materials.Comment: 14 pages,3 figure

    Fluctuating-friction molecular motors

    Full text link
    We show that the correlated stochastic fluctuation of the friction coefficient can give rise to long-range directional motion of a particle undergoing Brownian random walk in a constant periodic energy potential landscape. The occurrence of this motion requires the presence of two additional independent bodies interacting with the particle via friction and via the energy potential, respectively, which can move relative to each other. Such three-body system generalizes the classical Brownian ratchet mechanism, which requires only two interacting bodies. In particular, we describe a simple two-level model of fluctuating-friction molecular motor that can be solved analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt. Phys. Mater. vol. 9, 157] this model has been first applied to understanding the fundamental mechanism of the photoinduced reorientation of dye-doped liquid crystals. Applications of the same idea to other fields such as molecular biology and nanotechnology can however be envisioned. As an example, in this paper we work out a model of the actomyosin system based on the fluctuating-friction mechanism.Comment: to be published in J. Physics Condensed Matter (http://www.iop.org/Journals/JPhysCM

    Efficiency of Energy Transduction in a Molecular Chemical Engine

    Full text link
    A simple model of the two-state ratchet type is proposed for molecular chemical engines that convert chemical free energy into mechanical work and vice versa. The engine works by catalyzing a chemical reaction and turning a rotor. Analytical expressions are obtained for the dependences of rotation and reaction rates on the concentrations of reactant and product molecules, from which the performance of the engine is analyzed. In particular, the efficiency of energy transduction is discussed in some detail.Comment: 4 pages, 4 fugures; title modified, figures 2 and 3 modified, content changed (pages 1 and 4, mainly), references adde
    corecore